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Abstract. We have discussed the zero-temperature quantum phase transition in n-component quantum
rotor Hamiltonian in the presence of regular frustration in the interaction. The phase diagram consists of
ferromagnetic, helical and quantum paramagnetic phase, where the ferro-para and the helical-para phase
boundary meets at a multicritical point called a (d,m) quantum Lifshitz point where (d,m) indicates
that the m of the d spatial dimensions incorporate frustration. We have studied the Hamiltonian in the
vicinity of the quantum Lifshitz point in the spherical limit and also studied the renormalisation group
flow behaviour using standard momentum space renormalisation technique (for finite n). In the spherical
limit (n→∞) one finds that the helical phase does not exist in the presence of any nonvanishing quantum
fluctuation for m = d though the quantum Lifshitz point exists for all d > 1 +m/2, and the upper critical
dimensionality is given by du = 3+m/2. The scaling behaviour in the neighbourhood of a quantum Lifshitz
point in d dimensions is consistent with the behaviour near the classical Lifshitz point in (d+z) dimensions.
The dynamical exponent of the quantum Hamiltonian z is unity in the case of anisotropic Lifshitz point
(d > m) whereas z = 2 in the case of isotropic Lifshitz point (d = m). We have evaluated all the exponents
using the renormalisation flow equations along-with the scaling relations near the quantum Lifshitz point.
We have also obtained the exponents in the spherical limit (n → ∞). It has also been shown that the
exponents in the spherical model are all related to those of the corresponding Gaussian model by Fisher
renormalisation.

PACS. 05.30.-d Quantum statistical mechanics – 75.10.Jm Quantized spin models

1 Introduction

The study of phase transitions driven by quantum fluctu-
ations in pure and frustrated spin systems have been an
exciting area of recent research [1–6]. The Ising model in a
transverse field [1] and its n-component generalization, the
rotor models [2–6], are among the simplest systems to ex-
hibit a zero-temperature quantum phase transition. In the
absence of any quenched disorder the zero-temperature
transitions in the afore-mentioned models (in d dimen-
sions) have generally the same universality as the thermal
phase transition in the equivalent classical model in (d+1)
dimensions [7] except at special points. In the presence of
quenched disorder, the situation is fairly complicated since
the disorder is frozen in time, and thus has no dynamical
fluctuation.

The quantum rotor Hamiltonian is written as [2]

Hr = −
1

2

∑
ij

Jijxixj +
1

2In

∑
i

L2
i , with x2

i = n, (1)
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where xi are n-component, fixed length vectors occupying
the N sites of a d dimensional hypercubic lattice and the
operator L2

i = (1/2)
∑
µν(Lµνi )2 is the invariant formed

from the asymetric rotor space angular momentum tensor
Lµνi = xµi p

ν
i − x

ν
i p
µ
i . The moment of inertia term, which

determines the strength of the quantum fluctuations, is
denoted by I and Jij ’s denote the interaction among the
rotors. In the zero-temperature limit, with the increase of
the 1/I, one eventually gets a transition from the ferro-
magnetic (symmetry broken) phase a quantum disordered
(paramagnetic) ground state. The n = 1 limit of the above
Hamiltonian corresponds to classical Ising-like spin mod-
els in the presence of a transverse field. Although this
rotor-like systems (for n > 1) has got very limited scope of
experimental investigations but as mentioned previously
the model exhibits a nontrivial zero-temperature phase
transition and thereby might be helpful in the studies of
other systems showing quantum phase transitions [4].

The phase diagram and the critical behaviour asso-
ciated with classical systems having regular frustration
[8] in the interaction and the classical Lifshitz point
[9,10] have been studied in details. The thermal phase
boundary of a classical n-vector Hamiltonian consists of



98 The European Physical Journal B

the ferromagnetic phase (with wave vector q = 0), the he-
lically ordered phase (with nonzero ordering wave vector)
and the paramagnetic phase. The ferro-para and helical-
para phase boundary meets at a classical (d,m) Lifshitz
point where (d,m) denotes that the interaction in the
m of the d spatial directions of the lattice incorporate
frustration [9]. More generally speaking, an m-fold Lif-
shitz point is characterised by an instability associated
with the absence of quadratic terms of the form q2

α in
the effective Landau-Ginzburg-Wilson Hamiltonian for all
α = 1, 2, ...m ≤ d [10]. Classically, it requires a pair of cor-
relation length exponents (ν) and the Fisher exponents (η)
to describe the transition at the Lifshitz point [9]. It has
also been observed that in the classical case, form > d−1,
the helical long range order ceases to exist [10].

We have studied n-component quantum rotor Hamil-
tonian in the presence of regular frustration in the interac-
tion. The zero-temperature saddle point (in the spherical
or n → ∞ limit) study of the phase diagram (Sect. 2)
of the system clearly shows a ferro and modulated phase
meeting at a point, we call a quantum (d,m) Lifshitz
point. In the Section 3 we have employed a renormali-
sation group transformation to extract the information
about the phase transition around such a quantum Lifshitz
point with n finite. The renormalisation group studies and
the scaling relations indicate that in case of the isotropic
Lifshitz point, the dynamic exponent z = 2, in contrast
to z = 1 in the anisotropic case [11]. We conclude that in
the anisotropic case (d > m) the quantum Lifshitz point
is essentially equivalent to a (d + 1,m) classical Lifshitz
point, as expected in absence of quenched disorder but the
Isotropic case corresponds to a d+ 2 dimensional classical
case with all the directions having frustrated interactions.
In Section 4, we propose the modified hyperscaling rela-
tions and other scaling relations and in the Section 5, the
exponents associated with the Lifshitz point are evaluated
in the spherical limit (n→∞) evaluating the bubble dia-
grams and using “Fisher renormalisation” of the Gaussian
exponents of the corresponding model.

2 The study of the phase diagram
in the spherical limit

In this section, we shall study the quantum rotor Hamilto-
nian with regular frustration in the interaction Jij (near-
est neighbour interaction is ferromagnetic J1, next nearest
neighbour interaction being antiferromagnetic J2) in the
spherical limit (n → ∞) and explore the phase diagram.
Clearly, at zero temperature, the ground state is ferromag-
netically ordered or spiral-like ordered depending upon the
amount of frustration κ = |J2|/J1. For Axial next-nearest
neighbour Ising (ANNNI) like systems the classical ground
state is ferromagnetically ordered for κ ≤ 1/4 and shows
spiral structure for higher values of κ. Clearly, the phase
diagram of the model consists of an isotropic Lifshitz point
[9,10] where the ferro, spiral and para phases meet.

To evaluate the partition function of the quantum ro-
tor Hamiltonian (1), we consider the path-integral rep-
resentation. Using the fact that the angular momentum

term in the Hamiltonian is the angular part of the n di-
mensional Laplacian and the length of the the rotors are
fixed, one obtains a path integral representation of the
partition function of the form [2,6]

Z =

∫
Dx exp

[∫ β

0

dτL(x(τ))

]
, (2a)

with the effective classical action given by

L(x(τ)) = −
1

2
I
∑
i

|∂τxi(τ)|2 +
1

2

∑
ij

Jijxixj ,

with

x2
i (τ) = n. (2b)

Here xi(τ)’s are classical imaginary time-dependent n-
component vectors of length

√
n.

In the spherical limit, the saddle point condi-
tion at zero temperature (T → 0) [12,13], namely
∂f/∂λ = 0, where the analog of free energy f(λ) =

− ln
∫
Dx[

∫ β
0 L(x, λ)], with λ as the Lagrange’s undeter-

mined multiplier, can be written as [14]∑
q

1

2Iωq
= 1, (3a)

where
Iω2

q = λ− J(q), (3b)

and J(q) is the Fourier transform of Jij . Converting the
sum over wavevector q to integral, condition (3a) becomes

1

2
√
I

∫ 2π

0

ddq

(2π)d
1

(λ− J(q))1/2
= 1, (4)

where

J(q) =(cos q1 + cos q2 + .... cos qd)

− κ(cos 2q1 + cos 2q2 + ...+ cos 2qm). (5a)

Defining p = 1− 4κ for future convenience, we get

J(q, p) = 2
d∑
i=1

cos qi −
(1− p)

4

m∑
i=1

cos 2qi. (5b)

For p > 0 the classical ground state is ferromagnetic (with
zero modulation, all qα = 0) and for p < 0 corresponds to
the helical phase (with cos qα = 1/(1− p), α = 1, 2...,m).
The case p = 0 is the special point in the phase dia-
gram where the ferromagnetic and the helical phase meet,
which, as we defined previously, corresponds in this case
to the quantum Lifshitz point.

In order to look for a phase transition in the model,
we are to check whether equation (4) has a solution for
all values of I and p [12]. If the integral on the right hand
side diverges for λ → J(q0), where q0 is the ordering
wavevector, then the saddle point equation has a solution
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for all values of I and p. The ground state energy and
its derivatives are continuous functions of I and no phase
transition occurs. If the integral converges, a saddle point
exists above a certain critical value Ic of the parameter I
which indicate a quantum phase transition (phase transi-
tion driven by the quantum fluctuations induced by the
angular momentum term). So, the critical condition ob-
tained from equation (5b) can be written as

2
√
Ic =

∫ 2π

0

ddq

(2π)d
1

(λs − J(q))1/2
, (6a)

where

λs(p) =
1

4
(4d−m+mp) for p > 0 (6b)

and

λs(p) =
1

4
(1−p)−1

[
4d−m− (4d− 2m)p+ p2

]
for p < 0

(6c).
To study the phase diagram in the vicinity of the quantum
Lifshitz point (p → 0), the ordering wave vector qα →
(−p)1/2. One can simplify J(q, p) using the form [10]

J(q, p) = J0 −
1

c

[
(q2
α +

p

2
)2 + q2

β

]
(7)

where q2
α =

∑m
i=1 q

2
i and q2

β =
∑d
i=m+1 q

2
i and c is some

constant. With the above simplication of J(q) we find us-
ing equation (6a), the critical condition at the quantum
Lifshitz point (p = 0) as

2(
√
Ic)L =

∫ 2π

0

ddq

(2π)d
1

(q4
α + q2

β)1/2
, (8)

∼

∫
dmqα

1

(q4
α)(1−d+m)/2

,

integrating over the qβ’s (d−m components of q). Clearly,
the above integral is convergent for any value of d > 1 +
m/2. So we find a quantum Lifshitz point for the nonzero
value of I only when d > 1 + m/2. The ferro-para phase
boundary in the vicinity of a (d,m) is written as

2(
√
Ic)F = 2(

√
Ic)L

+

∫ 2π

0

ddq

(2π)d

(
1

(pq2
α + q4

α + q2
β)1/2

−
1

(q4
α + q2

β)1/2

)
,

(9)

and similarly the helical to para phase boundary is given
as

2(
√
Ic)H = 2(

√
Ic)L

+

∫ 2π

0

ddq

(2π)d

(
1

(p
2

4 + pq2
α + q4

α + q2
β)1/2

−
1

(q4
α + q2

β)1/2

)
.

(10)

It may be mentioned that the subscripts F , H and L in
the equations (8) to (10) refer to the the critical values

of I at the ferro-para, helical-para boundaries and at the
Lifshitz point respectively.

For 1 +m/2 < d < 3 +m/2, we have

2(
√
Ic)F = 2(

√
Ic)L +A±|p|

d−m/2−1 +Cp+O(p2), (11)

where the subscript + or − refers to the ferro-para tran-
sition (p > 0) and spiral-para transitions respectively. For
1 +m/2 < d < 2 +m/2 the amplitude is given as [10]

A+=−1/2cKmKd+1−m

×B(d−1−m/2, 2−d+m/2)B[1/2d−1/2, 1/2(d+1−m)],
(11a)

and

A− = −2d−m/2πcKmKd−m

× cosec π(d−m/2) cos(1/2π(d+ 1))B(1/2m, d−m),
(11b)

where Kd = 2−(d−1)π−d/2[Γ (1/2p)]−1, and B(x, y) is the
beta-function of x and y; c is a constant.

Clearly, for d → m, the amplitude A− vanishes, sig-
nalling the nonexistence of helical phase for any finite
value of quantum fluctuations for m = d in contrast to
the classical case where m = d − 1 is marginal [10]. This
result has also been obtained using the renormalisation
group calculations with the one-loop approximation [11].
Here, the results for the crossover exponent and the uni-
versal amplitude ratio perfectly matches with the results
obtained in the classical case with d = dclassical + 1. In
the quantum case, the equation of the upper critical crit-
ical dimensionality line is modified as du = 3 +mu/2. We
show in the Figure 1. The schematic phase diagram of
the phase boundary of a quantm rotor Hamiltonian in the
neighbourhood of a quantum Lifshitz point.

3 Renormalisation group study for finite n

In this section, we shall study the exponents and the
critical behaviour in the vicinity of a quantum Lifshitz
point (with finite n) both in the isotropic (m = d) and
anisotropic case (m < d), using the ε expansion around
the upper critical dimension. Following the discussion of
the last section, the quantum rotor partition function in
the imaginary time representation, with relaxed spin con-
straint, can be put in the form [2,11]

Z =

∫
Dxi(τ) exp(−A) (12)

with the effective classical action given as

A =

∫ β

0

dτ

L0(τ)−
∑
ij

Jijxi(τ)xj(τ)

 (13)

where

L0 =
1

2g

∑
i

(∂τxi)
2 + r

∑
i

x2
i + u

∑
(x2
i )

2. (14)
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F S

P

Fig. 1. The schematic phase diagram of the quantum rotor
Hamiltonian is shown. 1/I denotes the strength of the quan-
tum fluctuations and p is the measure of frustration. p = 0
point corresponds to the quantum Lifshitz point. F, S, P cor-
respond to the ferromagnetic, spiral and paramagnetic phase
respectively.

Here, the mass parameter r is the measure of the strength
of the quantum fluctuations which in the case of n = 1 is
proportional to the strength of the transverse field [7]. We
recast the n-component rotor action in the Fourier space,
with next nearest neighbour interaction in the m of the d
spatial directions as

A =
1

2

∫
ddq

(2π)d
dω

2π

×
[
ω2 + r + pq2

α + q2
β + (q2

α)2 + cγq
2
αq

2
β + cδ(q

2
β)2
]
xq(iω)

× x−q(−iω) + u

∫
dω1

2π
...
dω4

2π

∫
ddq1

(2π)d
...

...
ddq4

(2π)d
δd(q1 + ...+ q4)δ(ω1 + ....+ ω4)

× (xq1(iω1) · xq2(iω2))(xq3(iω3) · xq4(iω4)), (15)

where xq(iω) are n-component Fourier space representa-
tions of x and ω’s are continuous Matsubara frequencies
and we have retained upto the quartic term xq in the effec-
tive action. Here the model is spherically symmetric in the
subspace qα = (q1, q2, ..., qm) and qβ = (qm+1, ..., qd). The
equation (15) represents the generic action for a (d,m)
quantum Lifshitz point. The parameter p arises in the
present case due to competition in the interaction Jij ’s.
The Lifshitz point corresponds to p = 0 when, as men-
tioned previously, there is an instability associated with
the quadratic terms q2

α (momenta corresponding to the
spatial directions having frustration). Clearly p > 0 corre-
sponds to the ferromagnetic phase and p < 0 corresponds
to the helical phase with modulated wave-vector qα = p/2.

We shall renormalize the action A, employing the ε-
expansion around the upper critical dimension which in
the present case is du = 3+m/2. As in the classical case [9],
here also two length scale renormalisation factors, denoted

by a and b are involved corresponding to qα’s and qβ ’s
respectively.

The renormalisation group equations for the parameter
r and u, upto the first loop, are given as

r′ = b2 [r − 4(n+ 2)uA(r) + ...]

u′ = ζ4a−3mb−3(d−m)b−3z
[
u− 4(n+ 8)u2C(r)

]
= b(3+m/2)−d

[
u− 4(n+ 8)u2C(r) + ...

]
, (16)

where the field renormalisation parameter ζ2 =
ambd−ma4bz = ambd−mb2+z. From the renormalisation
of u, it is clear that for d > 4 + m/2 − z, u is irrele-
vant and the model has essentially the Gaussian critical
behaviour with exponents νl4 = 1/4, νl2 = 2νl2 = 1/2
and ηl2 = ηl4 = 0. Hence, the upper critical dimension
in the anisotropic case du = 4 + m/2 − z = 3 + m/2.
Defining ε = 4 + m/2 − (d + z) = 3 + m/2 − d, another
fixed point which we call the quantum Heisenberg Lifshtiz
point (which is stable below the upper critical dimension),
is given by

p = 0; u∗ =
ε ln b

4(n+ 8)C(0)
· (17)

Linearising around the quantum Heisenberg Lifshitz point
we find the exponents to the O(ε) given as

νl2 =
1

2
+
ε

4

(
n+ 2

n+ 8

)

νl4 =
1

4
+
ε

8

(
n+ 2

n+ 8

)
, (18)

to first order in ε. Obviously, ηl4 and ηl2 are of the order
of O(ε2).

Similarly, one now proceeds to the isotropic case. Here,
since only one set of momenta (qα = (q1, q2, ..., qd)) are
involved, we do only need one length rescaling factor a
and consequently one comes across νl4 and ηl4 only. Under
renormalisation group transformation the functions u and
v in present case, assume the form with the choice of ζ
given by ζ2 = ad+z+4

v(q) =
[
r + ω2a4−2z + q4

α + ...
]

u′(q, ω) = a8−(d+z)
[
u− 4(n+ 8)u2C(r) + ....

]
. (19)

Clearly in the present case, we can readily see that the ac-
tion invariance demands z = 2 so that as in the anisotropic
case here also quantum effect is marginal upto the first or-
der ε-expansion. From the renormalisation equation of u,
one finds that here the upper critical dimension is 6 in
contrast to the classical isotropic Lifshitz point where up-
per critical dimension is 8. This is interesting since in spite
of the translational invariance and periodic nature of frus-
tration the nature of the action demands the dimensional
shift in case of the quantum isotropic Lifshitz point is 2
rather than unity [11]. The single loop integral which de-
termines the “mass” renormalisation in the isotropic case
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is written as

I =

∫
ddq

(2π)d
dω

2π

1

q4 + ω2 + r
,

∼

∫
ddq

(2π)d
1

(q4 + r)1/2
· (20)

It scales as r(d−2)/4, while in the corresponding classi-
cal case, I scales as

∫
(ddq/(2π)d(1/(r + q4)) and hence

I ∼ r(d−4)/4. Clearly the quantum situation in d dimen-
sions correspond to the classical situation in (d + 2) di-
mensions. Since 6 is the upper critical dimension in the
isotropic case, the fixed point value of u is now O(6 − d)
in the lowest order and straightforward application of
the standard renormalisation group technique yields for
ε = 6− d [11]

νl4 =
1

4
+

ε

16

(
n+ 2

n+ 8

)
, (21)

which perfectly matches the ν obtained by Hornreich et al.
[9] for the classical case when ε = 8− d. The lowest order
η is found from a two loop calculation and in accordance
with our expectation, matches with the value of η in O(ε2)
[9]:

η = −
3

20

n+ 2

(n+ 8)2
ε2. (22)

To evaluate the exponents to the second order in ε in
anisotropic case, we need to perform a double ε expan-
sion around d0 and m0 [9,10]. In the isotropic case, it
is checked upto the second order in ε that exponents for
quantum phase transition exactly match with the expo-
nents associated with the classical Lifshitz point.

4 Scaling behaviour near the Lifshitz point

We shall now determine the scaling relations in the neigh-
bourhood of a general (d,m) quantum Lifshitz point. The
ground state energy density (with T = 0) for action A (2)

Ed = Ed (r, qα, qβ , ω) , (23)

is a function of r, q’s and ω, where r measures the interval
from the Lifshitz point. Under the renormalisation group
transformation as defined previously by a factor a or b the
ground state energy density defined above scales as

Ed ∼ b
−(d−m)a−mb−zg

(
rb1/νl2 , qβb, qαa, ωb

z
)
,

where g is the scaling function. Choosing, rb1/νl2 = 1 or
equivalently ra1/νl4 = 1 we obtain

Ed ∼ |r|
(d−m+z)νl2 |r|mνl4g (qβ/|r|

νl2 , qα/|r|
νl4 , ω/|r|νl2z) .

Clearly the temporal correlation length ξτ diverges as rντ

so that ντ = νl2z. The free energy density is expected
to scale in the form |r|2−αl so that we obtain a modified
hyperscaling relation associated with the transition at a
(d,m) quantum Lifshitz point given as

2− αl = (d−m+ z)νl2 +mνl4, (24)

with z = 1. In the isotropic case, similar arguments will
lead to the modified hyperscaling relation

2− αl = νl4(d+ z′), (25)

with z′ = 2 as mentioned previously. Again in this case,
the temporal correlation length exponent ντ = zνl4.

We shall now consider the scaling of the dynamic
susceptibility under the previous renormalisation group
transformation given as

χ ∝ ζ2a−mb−(d−m) (26)

where ζ, as defined previously, is given by

ζ2 = ambd−ma4−ηl4 = ambd−mb2−ηl2 .

With the above choice of a and b one finds for the scaling
relation of the correlation function as

χ ∝ |r|−(2−ηl2)νl2 .

As χ diverges as |r|−γ , one readily comes across the scaling
relation

γl = (2− ηl2)νl2, (27a)

or equivalently
γl = (4− ηl4)νl4. (27b)

In the isotropic case, only νl4’s are involved so one finds
the scaling relations of the form

2− αl = νl4(d+ z′), (28)

γl = (4− αl4)νl4,

with z′ = 2z = 2 in the present case.

5 Exponents in the spherical limit and the
Fisher renormalisation

We shall study action A (Eq. (15)) in the spherical limit
(n→∞) with u in action A is of the order of 1/n. Follow-
ing Ma [15], we shall only consider the “bubble diagrams”
which contribute in the n → ∞ limit. The self-energy
correction just above the quantum critical point in the
n→∞ limit, in the anisotropic case, is given as

Σa(r) −Σa(0) =∫
dω

2π

∫
ddq

(2π)d

(
1

ω2 + (q2
α)2 + q2

β + r
−

1

ω2 + (q2
α)2 + q2

β

)

=

∫
ddq

(2π)d

(
1

((q2
α)2 + q2

β + r)1/2
−

1

((q2
α)2 + q2

β)1/2

)
∼ r(d−1)/2−m/4. (29)

Since, near the quantum critical point Σa(r) − Σa(0) ∼
(r)1/γl ,hence we find for 1 +m/2 < d < 3 +m/2, 1/γl =
(d− 1)/2−m/2, so that γl = 2(d− 1−m/2)−1. Since ηl2
and ηl4 are zero in the spherical limit, one can find using
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the scaling relations (27), 2νl4 = νl2 = (d − 1 −m/2)−1.
Similar calculations in the isotropic case yields γl =
2(d/2− 1)−1; νl4 = 1

2 (d/2− 1)−1.

To evaluate the exponent αl, we note that lowest order
contribution to the specific heat near the critical point
(qα → 0, qβ → 0 and ω → 0) is written as

C = n
∏

(r, 0)
(

1 + nu
∏

(r, 0)
)−1

(30)

where the loop contribution in the anisotropic case is writ-
ten as

∏
(r, 0, 0) =

∫
ddp

(2π)d

∫
dω

2π

1

(ω2 + (q2
α)2 + q2

β + r)2
(31)

∼

∫
ddp

(2π)d
1

((q2
α)2 + q2

β + r)3/2

∼

∫
dmqα

(2π)d
1

((q2
α)2 + r)(3+m−d)/2

∼ r(d−3−m/2)/2 (32)

so that for 1+m/2 < d < 3+m/2, the specific heat expo-
nent αl is written as αl = (d− 3−m/2)/(d− 1−m/2).
Similarly for the isotropic case, one has αl =
(d/2− 3)/(d/2− 1). With the above value of αl, one can
now verify the hyperscaling relations, which is satisfied in
the isotropic case with z′ = 2z = 2.

In the case of classical n-vector Hamiltonian the ex-
ponents associated with the thermal phase transitions in
the spherical limit, can be reduced to the “Fisher renor-
malised” Gaussian exponents [16,17]. It can be shown that
this equivalence between the Gaussian and the spheri-
cal model exponents can be extended even in the case of
zero-temperature quantum transitions (see Appendix A).
Hence, the exponents in the spherical limit are related to
the exponents in the Gaussian limit are related by

αs = −
αg

1− αg

γs =
γg

1− αg

νs =
νg

1− αg
(33)

where the subscript g (s) denote the Gaussian (spherical)
exponents. In the Gaussian limit, the exponents at the
Lifshitz point are simply νgl2 = 1/2, νgl4 = 1/4 and γgl = 1.
Using the hyperscaling relation we find αgl = 1 − d/2 +
1/2+m/4. The Fisher renormalised exponents (exponents
in the spherical limit) obtained from the equations (33) are
γsl = 2(d− 1−m/2)−1, αsl = (d− 3−m/2)/(d− 1−m/2)
which match perfectly with the exponents obtained using
the standard renormalisation group technique. It may be

mentioned that the dynamic exponent remains unchanged
under this renormalisation: zs = zg.

6 Conclusion

We have studied the quantum rotor system in the pres-
ence of regular frustration in the interaction. The phase
diagram in the vicinity of the quantum Lifshitz point and
also the condition for the existence of the helical phase has
been studied in the spherical (n→∞) limit. In the finite
n case, the standard renormalisation group flow equations
(one loop approximation) have been employed to extract
the critical exponents associated with the quantum Lif-
shitz point. The dynamical exponent z of the quantum
system has been found to be 2 in the case of isotropic
Lifshitz point while in the anisotropic case z is 1. We
have also derived the modified hyperscaling relation start-
ing from a generic ground state energy density associated
with the quantum phase transitions. The exponents are
also derived in the spherical limit and it has been shown
explicitly that the even in the case of quantum phase tran-
sitions the exponents in the spherical limit are related to
the exponents in the Gaussian limit by “Fisher renormal-
isation”.

Appendix A: Fisher renormalisation
of quantum spherical models

In this section, we shall indicate how the relationship be-
tween the exponents associated with the quantum phase
transition in the spherical limit to those in the correspond-
ing Gaussian model is obtained through “Fisher renormal-
isation”. Following Fisher [17], the critical exponents of a
system with annealed coupling to analytically constrained
variables can be expressed by Fisher renormalisation of the
critical exponents of the unconstrained or pure systems. In
the following, we shall show that even in zero temperature
quantum transition, the spherical model can be expressed
as a Gaussian model with annealed (analytic) constraints
[16].

We shall again start here with the partition function of
the n-component soft rotor as given previously in equation
(14). We now employ the Hubbard-Stratonowitch trans-
formations to simplify the term

exp

(
−
u

4

∫ β

0

{
n∑
α=1

x2
i }

2

)
= (πu)−1/2

×

∫ ∏
i

dψi exp

(
−

1

u

∫ β

0

ψ2
i (τ)dτ

+ i

∫ β

0

dτψi(τ)
n∑
α=1

x2
iα(τ)

)
; (A.1)
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so that

Z=(πu)−N/2
∫ ∏

i

dψi exp

(
−

1

u

n∑
α=1

∫ β

0

dτψ2
i (τ)dτ

+i

∫ β

0

dτψi(τ)
n∑

α=1

x2
iα(τ)

)

−

∫ β

0

∑
α

(∑
i

1

2g
[(∂τxiα(τ))2+rx2

iα)

+
∑
ij

Jijxiα(τ)xj,α(τ)

)
,

=

∫ +∞

−∞

∏
i

dψi(τ)exp

(∫ β

0

dτ

(
−
n

u

∑
i

ψ2
i (τ)−nφG(ψ)

))

where the Gaussian free energy functional φG(ψ) is given
by

e−nφG(ψ) =∫ ∏
i

∏
α

dτdxiα(τ) exp

(∑
α=1n

(
−
∑
ij

Jijxiα(τ)xjα(τ)

+
∑
i

(r + iψi)xiα(τ)2 + (1/2g)
∑
i

(∂τxiα(τ))2
))
.

For the large n, the saddle point condition is given by

ψi(τ) =
∂φG(ψi(τ))

∂ψi(τ)
, (A.2)

which may be taken to be the analytic constraint for the
annealed coupling parameters ψ. One possible solution of
the above saddle point equation is

ψi(τ) = ψ,

for all i and τ . Following the same arguments as given in
Emery [16] one now finds that the Fisher renormalisation

is valid even in the quantum transitions and the quantum
critical exponents in the spherical limit αs, βs and νs are
related to the corresponding Gaussian exponents αG, βG
and νG through the Fisher renormalisation (33).
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